Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synlett ; 27(9): 1349-1353, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27397970

RESUMO

As additional physiological functions of hydrogen sulfide (H2S) are discovered, developing practical methods for exogenous H2S delivery is important. In particular, nonsteroidal anti-inflammatory drugs (NSAIDs) functionalized with H2S-releasing anethole dithiolethione (ADT-OH) through ester bonds are being investigated for their combined anti-inflammatory and antioxidant potential. The chemical robustness of the connection between drug and H2S-delivery components, however, is a key and controllable linkage in these compounds. Because esters are susceptible to hydrolysis, particularly under acidic conditions such as stomach acid in oral drug delivery applications, we report here a simple synthesis of amino-ADT (ADT-NH2 ) and provide conditions for successful ADT-NH2 derivatization with the drugs naproxen and valproic acid. Using UV-vis spectroscopy and HPLC analysis, we demonstrate that amide-functionalized ADT derivatives are significantly more resistant to hydrolysis than ester-functionalized ADT derivatives.

2.
J Am Chem Soc ; 137(48): 15169-75, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26512733

RESUMO

Tracking of Pt(II) complexes is of crucial importance toward understanding Pt interactions with cellular biomolecules. Post-treatment fluorescent labeling of functionalized Pt(II)-based agents using the bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has recently been reported as a promising approach. Here we describe an azide-functionalized Pt(II) complex, cis-[Pt(2-azidobutyl)amido-1,3-propanediamine)Cl2] (1), containing the cis geometry and difunctional reactivity of cisplatin, and present a comparative study with its previously described alkyne-functionalized congener. Single-crystal X-ray diffraction reveals a dramatic change in the solid-state arrangement with exchange of the alkyne for an azide moiety wherein 1 is dominated by a pseudo-chain of Pt-Pt dimers and antiparallel alignment of the azide substituents, in comparison with a circular arrangement supported by CH/π(C≡C) interactions in the alkyne version. In vitro studies indicate similar DNA binding and click reactivity of both congeners observed by fluorescent labeling. Interestingly, complex 1 shows in vitro enhanced click reactivity in comparison to a previously reported azide-appended Pt(II) complex. Despite their similar behavior in vitro, preliminary in cellulo HeLa studies indicate a superior imaging potential of azide-functionalized 1. Post-treatment fluorescent labeling of 1 observed by confocal fluorescence microscopy shows nuclear and intense nucleolar localization. These results demonstrate the potential of 1 in different cell line localization studies and for future isolation and purification of Pt-bound targets.

3.
Dalton Trans ; 44(8): 3536-9, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25338004

RESUMO

cis-[Pt(2-azido-1,3-propanediamine)Cl2] is a reagent for high-yield post-treatment fluorescent labelling of Pt(II) biomolecular targets using click chemistry and exhibits a bias in conformational isomers in the context of duplex DNA. Pt-protein adducts are detected using BSA as a model. Following in vivo treatment, long-lived Pt-RNA adducts are detected on ribosomal RNA.


Assuntos
Complexos de Coordenação/química , DNA/química , Platina/química , Proteínas/química , RNA/química , Animais , Bovinos , Química Click , Complexos de Coordenação/síntese química , Adutos de DNA/química , Hidrazinas/química , Proteínas/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
4.
J Am Chem Soc ; 135(32): 11680-3, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879391

RESUMO

Despite the broad use of platinum-based chemotherapeutics, identification of their full range of cellular targets remains a significant challenge. In order to identify, visualize, and isolate cellular targets of Pt(II) complexes, we have modified the chemotherapeutic drug picoplatin with an azide moiety for subsequent click reactivity. The new compound picazoplatin readily binds DNA and RNA oligonucleotides and undergoes facile post-labeling click reactions to alkyne-fluorophore conjugates. Pt-fluorophore click reactions in rRNA purified from drug-treated Saccharomyces cerevisiae demonstrate its potential for future in vivo efforts.


Assuntos
Azidas/química , Compostos Organoplatínicos/química , Alcinos/química , Azidas/farmacologia , Química Click , Descoberta de Drogas , Corantes Fluorescentes/química , Modelos Moleculares , Oligonucleotídeos/metabolismo , Compostos Organoplatínicos/farmacologia
5.
Free Radic Biol Med ; 63: 476-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23685286

RESUMO

Donors of nitroxyl (HNO) have shown promise for treatment of stroke, heart failure, alcoholism and cancer. However, comparing the pharmacological capacities of various donors is difficult without first quantifying the amount of HNO released from each donor. Detection and quantitation of HNO has been complicated by the rapid self-consumption of HNO through irreversible dimerization, poor selectivity of trapping agents against other nitrogen oxides, and/or low sensitivity towards HNO. Here, an assay is described for the trapping of HNO by glutathione (GSH) followed by labeling of GSH with the fluorogenic agent, naphthalene-2,3-dicarboxaldehyde (NDA), and subsequent quantitation by fluorescence difference. The newly developed assay was used to validate the pH-dependence of HNO release from isopropylamine NONOate (IPA/NO), which is a dual donor of HNO and NO at physiological pH. Furthermore, varied assay conditions were utilized to suggest the ratios of the products of the reaction of GSH with HNO. At intracellular concentrations of GSH, the disulfide (GSSG) was the major product, but significant concentrations of glutathione sulfinamide (GS(O)NH2) were also detected. This suggests that GS(O)NH2, which is a selective biomarker of HNO, may be produced in concentrations that are amenable to in vivo analysis.


Assuntos
Glutationa/química , Hidrazinas/química , Doadores de Óxido Nítrico , Óxidos de Nitrogênio/química , Aminas/química , Dimerização , Corantes Fluorescentes , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Hidrazinas/metabolismo , Naftalenos/química , Óxidos de Nitrogênio/metabolismo , Análise Espectral , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...